
Phase I of the MCAS project puts together infrastructure of tools and services for efficient refactoring of existing
informational portals with capabilities of aggregating and correlating information provided by those portals.

Project goal.
Our goal is to factor out presentation and business analysis logic from available monitoring solutions into a
standalone model supporting common standard in means for data manipulation and presentation. We have
prototyped several services which relay on common techniques for data and information display aggregation. In
particular , we’ve chosen portlet technology to compose troubleshooting and metric analysis dashboard and ESB
Mule to drive data integration model. We have used portlet JSR128 specification and Jboss engine for display
integration and Mule ESB to transform external data for consumption by the portlet code.

Mission need
It’s common that distributed software stack or grid workflow can span organization, ownership and deployment domains. In this setting, such important and common tasks as metric and debug information
collection, display and ultimately problem troubleshooting are challenged by informational entropy inherent to independently maintained and operated software sub components. Because such an information
"pond" is disorganized, it becomes a difficult target for business intelligence analysis i.e. troubleshooting, incident investigation and trend spotting.

Metric Correlation and Analysis Service (MCAS)
The MCAS mission is to deliver the software product to help with adaptation, retrieval, correlation and

display of type agnostic and disjoint middleware generated events and workflow driven data.

Data integration model
Data integration model relies on Mule ESB for data source access , inter component message exchange and data
transformation scheduling. The primary benefit of Mule ESB integration platform is in its features to manage data and
execution flow in a transport/interface agnostic way. In particular Mule ESB offers:
•Codes to translate or templatise translation of data formats
•Options of manage synchronicity with choice ranging from fully synchronous to SEDA (stage event driven architecture)
based solutions.
•Codes which adapt out of the box to different transports (TCP, UDP, SMTP, FTP, jdbc, etc)

Transformation pipeline: Example

ds(D0ProductionEfficiency)
ec=eff_code; ef=eff_fini; RRD(CDEF:ec_adj=ec,0,100,LIMIT CDEF:ef_adj=ef,0,100,LIMIT

LINE2:ec_adj#FF0000:eff_code(x100) LINE2:ef_adj#0000FF:eff_fini(x100)) imgsize(600,300)

Figure 2 depicts one of the implemented scenarios which uses data transformation workflow and RRD processing engine
to do splitting, rescaling and redrawing of D0SiteEfficiency data by the RRD processing engine.

Data transformation engine is using “models” to drive the message interactions between Mule ESB message endpoints.
This particular above schema is designed to understand template like language and has only one data source
(production efficiency) endpoint. The embedded RRD template allows to perform transformations over split data
streams . The result of the transformation -new document (an image) is sent to the portlet instance specifically
configured to interact with this data integration model.

Figure 2

Different Data Sources

Content Management
System (CMS)

Portal

P1

P4P3

P2

P
o

rt
al

 U
R

L

Data Integration Layer

Data Access LayerData Transformation Layer

Input
Data

Data
Aggregator

Raw
Data

Aggregated Data

A
gg

re
ga

te
d

D

at
a

Data
Transformation

Rules Engine

HTML->
XML

Text -> XML

DB -> XML

Database
Reader

URL Reader

Graph Reader

Request
Parser

Legends: Control Flow

Data/Information

P1, P2, P3, P4: Portlets

Figure 1. High level view of control and data flow inside the system

D0 Production efficiency data
source

RRD processing engine

Model gateway: REST query
to Mule Message convertor

Content Management

Split

Meta
data

Display

Mule message
w/processing
instructions

Splitter

Efficiency : files
produced

Efficiency : exit
code

Mule endpoint

Mule endpoint

Mule endpoint

Mule endpoint

JBoss portal content management system builds composition of independent interface elements – portlets (P1 , P2,
P3, P4). Each portlet can be independently designed with some unique perspective of the particular system aspects.
The composition of such elements is a dashboard of indicators specifically put together to comprehensively reflect
the state of the entire system.

Workflow

Messaging
Message exchange is a clever way to decouple contexts of two programs. Messaging is a soft pattern which does not imply
fixed db schema or file format behind. It can encapsulates data transport and synchronicity issues. Most importantly using
Mule message enabled infrastructure we can use opaque payloads and do modeling of the data access and aggregation
work flow w/o setting the specifics of the data source type structures.

Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359

Each portlet is rendered using information provided by the data integration layer.

Data integration layer accesses set of data sources and uses collection of rules to transform and aggregate the
retrieved content. Data integration layer generates digest content with only those details that are relevant to
rendering of the portlet itself.

The result is returned synchronously to a requesting party, which may be portlet or parent data integration rule set.

Data integration layer defines all url endpoints providing content for the display. These endpoints may be as simple as
proxies to existing web pages or hide rules for transforming and aggregating data retrieved from other sources. The
purpose of this complexity is to provide data that is not unavailable in content preferred by the user interface.

Summary Data source transformation template language: Example

